The Effect of Feature Scaling on the Clustering of Landsat MSS Data

نویسندگان

  • L. A. Bartolucci
  • S. M. Davis
  • P. H. Swain
چکیده

Nonsupervised classification by clustering has been shown to be a very important tool in the analysis of satellite remote senSing data. However, clustering algorithms which use Euclidean distance as a measure of similarity are highly sensitive to scaling differences among the variables which participate in the clustering process. Since the Landsat MSS spectral bands have different ranges and different calibration functions, this scaling sensitivity is likely to have a significant impact on the results of clustering Landsat MSS data, as is demonstrated by the experiments described in this paper. A rescaling strategy for Landsat MSS data is recommended which seems to give appropriate relative weights to the four spectral bands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying Supervised Clustering to Landsat MSS Images into GIS-Application

In this paper, the authors describe and implement an algorithm to perform a supervised classification into Landsat MSS satellite images. The Maximum Likelihood Classification method is used to generate raster digital thematic maps by means of a supervised clustering. The clustering method has been proved in Landsat MSS images of different regions of Mexico to detect several training data relate...

متن کامل

An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network

Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...

متن کامل

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013